
High Performance DHCP 1

Copyright © 2024 InkBridge Networks. All Rights Reserved.

DISCLAIMER
The information in this document is confidential, and is Copyright © 2024 InkBridge Networks. All Rights Reserved.

The information in this document are based on the current knowledge of InkBridge Networks. We reserve the right to withdraw or change the contents of
this document at any time. We accept no responsibility should any damages be caused to a person, persons, device, devices, or organization as a result of

the use that is made of information provided in, or taken from, this documentation or as a result of reliance on the information in this documentation.

HIGH PERFORMANCE DHCP

Prepared by Alan DeKok, CEO

Date 2024-03-02

 

Executive Summary

This data sheet describes the high performance DHCP

server product from InkBridge Networks (formerly

Network RADIUS). It allocates 10,000 leases per second

per CPU core, on commodity hardware, and using “off the

shelf” software. Minimal customization is required, and

configuration changes can be made live while the service

is running.

For more information, please contact us at:

sales@inkbridge.io

We produce the most widely deployed RADIUS server in

the world. With more than one hundred thousand

(100,000) installations, it has been used in a wider variety

of environments than any other product.

Since 2008, we have also produced a DHCP server which

is based on FreeRADIUS. It offers unparalleled flexibility,

while achieving world-leading performance.

High Performance DHCP 3

1. Introduction 4
1.1 Why FreeRADIUS 4

1.2 Performance Optimizations 4

1.3 Benefits of Redis 4

2. Customer Use-Case 5
2.1 Databases and Directories Used 5

2.2 System Migration 5

2.2 Fail-Over and Fail-Back 6

2.3 How we use Redis 6

3. DHCP Operation 6
3.1 DHCP Discover 6

3.2 DHCP Request 7

3.3 DHCP Release 7

3.4 Lease Management 7

10. Contact Information 8

Copyright © 2024 InkBridge Networks. All Rights Reserved.

High Performance DHCP 4

1. INTRODUCTION
DHCP Servers have traditionally offered
performance in the range of tens to hundreds of
leases per second. Some larger commercial offerings
accept higher load, but at a substantially increased
cost.

We have built on the proven FreeRADIUS code base.
When using Redis Cluster as the back-end database,
we achieve unparalleled performance and flexibility.
The end result is a system that achieves 10K DORAs
(Discover, Offer, Request, Allocate) per second, per
CPU core, while offering full security and consistency
checks for each lease allocation.

1.1 Why FreeRADIUS

Using a RADIUS server for a DHCP solution may
seem to be an unusual choice. For us, the choice
comes out of our desire to offer flexible DHCP
policies.

Most “open source” DHCP servers offer very little
flexibility in the policy rules that they implement.
Typically, the leases are assigned from statically
configured pools, with a simplistic (and fixed)
database back-end. Complex policies are extremely
difficult to implement, and integration with multiple
databases is impossible.

Commercial DHCP servers are little better.
Unfortunately, while they offer simple graphical user
interfaces for day-to-day administration, complex
tasks and automation must be performed via an
extensions API. Additionally, the proprietary
databases used in these commercial solutions can
become a form of vendor lock-in, making migration
to other platforms difficult. This limitation is not
acceptable for new deployments.

Adding DHCP support toFreeRADIUS required
minimal effort. IP allocation was already available for
IP assignment via RADIUS. Supporting DHCP

was as simple as adding protocol-specific packet
encoders and decoders. The extensible “plug in”
nature of FreeRADIUS abstracted away the
differences between RADIUS and DHCP, and ensures

that neither the internal policy engine, nor the
datastore back-ends are aware that they were
processing DHCP packets instead of RADIUS packets.

1.2 Performance Optimizations

Some DHCP servers suffer from NIH (Not Invented
Here) syndrome. Instead of specializing in the DHCP
protocol, they attempt to implement everything
themselves, including a simplistic database and API.
Their implementations are usually limited to tens or
hundreds of leases per second. These limitations
arises because the databases fully synchronous,
meaning that lease data must be data is written to
disk before the lease can be allocated. While safe,
this design is slow in practice.

In contrast, FreeRADIUS implements just the DHCP
protocol, and relies on external databases to store
lease data. This approach allows the administrator to
choose the combination of performance vs safety
which best meets the needs of the local network.

1.3 Benefits of Redis

Redis cluster as a lease store is particularly
interesting, as it has a good balance of scalability,
fault tolerance and raw performance. Distributing
the operations over multiple nodes in a cluster
ensures that the data is copied to multiple slaves,
instead of being written synchronously to local disk.
The only time that leases can be lost is when the
majority of datastore nodes fail at the same time.
Outside of a complete power outage with no UPS,
this situation is rare.

The Redis IP allocation module developed for
FreeRADIUS communicates directly with Redis
cluster. It implements the full Redis Cluster protocol,
including load-balancing, fail-over and live node
detection. The number of slaves required to report
receipt of lease data is tuneable, meaning
administrators can make the right trade off between
latency and reliability for their environment.

Our tests show this system is capable of allocating
10K leases per second, per CPU core, all on
commodity hardware. For redundancy, we

Copyright © 2024 InkBridge Networks. All Rights Reserved.

High Performance DHCP 5

recommend using at least two front-end servers, and
at least four Redis Cluster nodes. This high
availability configuration is capable of handing out
40K leases per second. Configurations with more
Redis Cluster nodes can easily reach 100K or more
leases per second.

As a high performance solution, it is unparalleled in
the cost per unit of performance. The goal for us is
to provide the highest performance solution at the
most competitive price, and we have achieved that
goal. The trade-off is that for now, the product does
not have a graphical user interface, and instead
relies on direct database modification for
configuration changes.

2. CUSTOMER USE-CASE
We were approached by a customer who operates
an ISP in the United States, with a few hundred
thousand end users. Their existing DHCP solution
was old, and needed replacing. They had
approached a few commercial DHCP vendors, and
were quoted prices in the range of a few hundred
thousand dollars for the system, plus a cost in the
high tens of thousands of dollars per year for
support. This price was unworkable for them.

The customer was already using FreeRADIUS for the
RADIUS side of their business, and were aware that
the server included DHCP support. They contacted
us to see if we could meet their DHCP needs.

After an investigation, we determined that we could
meet their requirements for both total cost of
ownership (TCO), and for system performance.

The rest of this document describes how the system
was built.

2.1 Databases and Directories Used

We built a system which uses two databases, with
each datastore being used where it is most efficient.

Dynamic lease information such as active IP
addresses, free IP addresses, and IP / device
mappings) were stored in the Redis cluster.

Information which is mostly static was stored in an
LDAP directory. This information included subscriber
information such as name and MAC address; pool /
gateway associations, DHCP options associated with
each pool, and static IP addresses.

All information retrieved from LDAP was cached
locally. This caching further reduced the load on the
LDAP server. It also improved system survivability,
which allowed continued operation of DHCP even if
FreeRADIUS was isolated from the directory server.

The resulting system has the best of both databases.
All IP pool and range information is stored in LDAP,
and can be dynamically modified without restarting
the DHCP server. All leases are stored in Redis
Cluster, which maintains data duplication while
offering high performance.

In customer tests of a catastrophic network event,
the system successfully brought all end users online
within ten (10) seconds. This performance is high
enough that network outages due to an overloaded
DHCP server are a thing of the past.

The only time that leases can be lost is when the
majority of datastore nodes fail at the same time.
Outside of a complete power outage with no UPS,
this situation is rare.

2.2 System Migration

The customer had an existing DHCP solution, which
was in daily use. There was a hard requirement to
not have a “flag day”, where the old system went
down, and the new system was started. We therefore
designed a migration system which required zero
down-time.

The first step was to analyze the existing system, and
to extract all information about ranges, options,
pools, IP addresses, etc. This information was used
to build the new DHCP system.

Once the new DHCP system was operational, it was
configured to operate on a “span” port. This
configuration allowed monitoring of all DHCP traffic.
The system was configured to go through the normal
DHCP allocation process, but not to reply to the
DHCP requests.

Copyright © 2024 InkBridge Networks. All Rights Reserved.

High Performance DHCP 6

Instead, the responses created by the new system
were cached, and compared to the responses sent
from the existing system. Any differences caused an
alert to be logged.

When the two systems had identical responses, we
proceeded to the next step. The network was
updated so that the new system acted as a gateway,.
It received DHCP requests, and relayed them to the
old system. Crucially, it also updated the giaddr field
so that the responses from the old DHCP server
would be sent to the new system.

When it received the response, it would store the
response, and update the reply packet with the
correct giaddr. The complex policies allowed by
FreeRADIUS made this process trivial.

As the clients renewed their leases, the new system
would allocate the lease itself, instead of relaying the
request to the old system. After a few days of
operation, the old system was no longer receiving
any packets. It could then be safely decommissioned
with no effect on the network.

2.2 Fail-Over and Fail-Back

As with any system migration, there were issues
discovered during the migration process. The design
of the system ensured that we could easily remove
the new system from the network, and fall back to
using the old system. Due to the configurable nature
of FreeRADIUS, this process could be done live,
without affecting service levels.

The ability to migrate the leases without affecting
service levels was a critical requirement for the
customer, and a large influence in their decision to
use FreeRADIUS as their DHCP server.

2.3 How we use Redis

In this section, we describe at a high level how we
store DHCP lease data in Redis.

First, the free leases are stored in a Redis ZSET which
is ordered by the Unix timestamp. Obtaining a free
lease is then an O(log(n)) operation, which scales out
to tens of millions of leases on commodity hardware.

Second, the IP addresses are stored in a Redis HASH.
The hash contains four keys: range; device; gateway,
and counter. The “range” contains the name of the
address range to which the IP address belongs. The
“device” is a unique identifier for the DHCP client,
which is typically the MAC address. The “gateway” is
the DHCP gateway through which the allocation
request was received. The “counter” indicates how
many times the lease has been allocated and
released by the client.

Finally, there association between the device and
allocated IP address is stored in a Redis STRING type.
This information is keyed off of the IP pool and client
identifier. This allows the server to detect clients
which attempt to allocate an entire range of
addresses. When the system determines that a
device has an active association, it refuses to allocate
new and different IP addresses for that device.

3. DHCP OPERATION
In this section, we describe how the DHCP service
operates. The descriptions are at a high level, and do
not include all of the technical details required to
implement a full solution.

3.1 DHCP Discover

When a DHCP discover is received, the server looks
up the device in the Redis Cluster. If a lease is active
for that device, the lease is returned, and processing
stops.

An LDAP lookup is performed to discover static IPs. If
found, the IP is marked as allocated and is returned
to the user.

Otherwise, the Redis ZEVRANGE command is used to
find the older expired IP address in the pool. Failure
to find a free lease triggers an SNMP trap.

The Redis ZADD command is then used to allocate
the lease with a short expiry time. This expiry follows
DHCP best practices, and ensures that leases are
expired quickly if not acknowledged by the client.

An LDAP lookup is performed in order to return any
range-specific DHCP options. This information is also

Copyright © 2024 InkBridge Networks. All Rights Reserved.

High Performance DHCP 7

cached in order to minimize the load on the LDAP
server.

The Redis hash is then updated with the device
information, IP address, expiry time, etc., and the
lease is returned to the client.

3.2 DHCP Request

When a DHCP Request is received, the server looks
up the device in the Redis Cluster. If no lease is
found or the device does not match the allocated
lease, a DHCP NAK is immediately returned. This
NAK indicates to the client that the lease request was
invalid, and that it should start the process again
with a DHCP Discover.

Otherwise, the hash is updated with the new expiry
time for the lease, and the lease is returned to the
client, along with the cached DHCP option
information.

3.3 DHCP Release

As with the DHCP Request above, the device is
looked up in the Redis Cluster, and a NAK is returned
if the device information does not match.

Otherwise, the mapping between IP and device is
removed from the Redis Cluster. Dynamic leases are
marked as free and returned to the free pool, while
static IP leases are simply deleted.

3.4 Lease Management

Lease management is performed by updating the
LDAP datastore. DHCP options and static IP
assignments can be modified directly in LDAP. Range
additions or removals are done via a set of Lua
scripts which ensure consistency across the multiple
Redis data sets.

At no time does the DHCP server need to be
restarted. As the underlying databases are lockless
or MVCC compliant, the DHCP server does not even
block while datastore operations are being
performed.

One key design of this solution is the clear
separation between static and dynamic IP addresses.

As the databases are not aware of application-
specific requirements, they cannot be relied on to
perform the “correct” operation when
inconsistencies occur. Any conflict between the two
is therefore resolved by the DHCP server in its
normal operation. This conflict can only be resolved
by the DHCP server, as it knows what best to do in
order to ensure both network and datastore
consistency.

The resulting system is therefore highly flexible, low-
cost, and very high performance.

Copyright © 2024 InkBridge Networks. All Rights Reserved.

High Performance DHCP 8

10. Contact Information

Copyright © 2024 InkBridge Networks. All Rights Reserved.

InkBridge Networks

26 rue Colonel Dumont

38000 Grenoble

FRANCE

T +33 4 85 88 22 67

F +33 4 56 80 95 75

W https://inkbridgenetworks.com

E sales@inkbridge.io

InkBridge Networks (Canada)

100 Centrepointe Drive, Suite 200

Ottawa, ON, K2G 6B1

Canada

T +1 613 454 5037

F +1 613 280 1542

http://inkbridgenetworks.com
mailto:sales@inkbridge.io

	1. Introduction
	1.1 Why FreeRADIUS
	1.2 Performance Optimizations
	1.3 Benefits of Redis
	2. Customer Use-Case
	2.1 Databases and Directories Used
	2.2 System Migration
	2.2 Fail-Over and Fail-Back
	2.3 How we use Redis
	3. DHCP Operation
	3.1 DHCP Discover
	3.2 DHCP Request
	3.3 DHCP Release
	3.4 Lease Management
	10. Contact Information

